
Yuri Alex Brigance

Portfolio

10272015

Professional and personal projects.
One project per page.

Server Client Hardware

John Deere
Harvest Mobile

 Harvest Mobile is a combine performance monitoring and optimization solution
from John Deere that helps growers better understand their data and make machine
adjustments to increase performance. Harvest Mobile works with the GreenStar™ 3
2630 Display, compatible S-Series combines, and combine software to enhance the
harvesting experience.

 Harvest Mobile wirelessly sends the
harvest information from the combine to
an iPad® inside the cab. The iPad
displays the harvest information in maps
that make it easier for the grower to
understand the yield performance.

 Interactive Combine Adjust (ICA) is
an intuitive user flow wizard that makes
it easy to identify issues and adjust
settings to optimize harvesting
performance. ICA wirelessly adjusts
combine settings from the iPad when the
grower approves an optimization
recommendation.

01mobile

Objective-C, iOS (iPad)

mobile, server, cross-platform 02

This project is not yet in production.
As much as I would like to talk about
how cool it is, I can’t do so until it

has been revealed to the public.

John Deere
SeedStar Mobile

 SeedStar™ Mobile is a high definition planter monitoring solution that helps
growers better understand their planter performance. SeedStar Mobile wirelessly
sends the planting information from the planter to the iPad inside the cab of the
tractor. The iPad displays the planter information with high definition,
row-by-row maps that make it easier to understand the planter performance.

Growers can see fluctuations in
singulation as they occur and get the

information needed to correct these and
other issues, quickly. The dashboard is
customizable and a the user can select
from a large number of variables, based

on what is most important to them.

While in the field, the app can also
wirelessly transfer the planting

information to the cloud by utilizing
the cellular capabilities of the iPad.
The data can be utilized for future

reference to help growers more
efficiently plan and manage their

farming operation.

03mobile

Objective-C, iOS (iPad)

Walt Disney
My Disney Experience

client 04

Objective-C (iPhone/iPad)

 My Disney Experience mobile app has an immense amount of features that provide
great value to the guests. Users can navigate the park, see wait times, make
dinner reservations, get Fast Pass on their mobile device, plan their trip, manage
tickets, and much much more. The app looks beautiful too!

 I was primarily involved in iOS client-side development, and frequently
utilized my knowledge of Disney’s back-end server systems, which I acquired during
previous engagements.

iJet Onboard
Data Platform

server, hardware, client 05

Java, JavaScript

 The iJet solution begins with the iJet Platform which includes a software
package onboard each aircraft connected via IP links to an intelligent ground
system. The airborne platform integrates aircraft and ground data with EFB
(Electronic Flight Bag) and Cabin devices while applying business logic and
analytics to airborne data in real time. The ground system aggregates aircraft
data, connects to ground based applications and analytics, integrates to corporate
back end systems and moves data up to the aircraft using similar business logic.

 The data is acquired directly from the aircraft
telemetry bus (ARINC 429/717) and is parsed, then
analyzed in real time by a custom programmable
stream processing engine.

 The platform then decides which data is
important to send offboard to a ground data center
based on the condition of the aircraft and which
communications link is being utilized (terrestrial
or sattelite, for example).

 Back on the ground, the data is stored for
later analysis. Communication between the aircraft
and the offboard data centers is two-way, allowing
commands to be sent up to the aircraft in real
time.

 Pilots can access real-time
telemetry, be alerted of various
events, and receive commands
from the ground mid-flight using
any wireless device that can act
as an Electronic Flight Bag.

Verizon
e-Magazine

06mobile

Objective-C, iOS (iPad)

 Verizon commissioned this project to use as
an internal communication tool for retail
employees. The reader had to be fast, download
magazine issues from the cloud, and display
interactive graphics.

 The secondary task was to create a reusable
e-magazine framework for use in other
applications.

 The application relies heavily on
multi-threading to speed up performance. Some
particularly interesting pieces of code that I
had to implement include thumbnail rendering of
ePub pages, the ability to inject JavaScript
into a UIWebView to detect which element was
interacted with on the page, simultaneous
download capability (for downloading many ePubs
at once) and a lot of custom views.

Upon completion, this application’s rendering
performance outdid Oprah’s own e-magazine app.

UIEvolution
e-Magazine Platform

07mobile

Objective-C (iPad)

 The e-Magazine framework which was developed for Verizon lived on to
 In my experience, a lot of customers have more than one applications
that are similar. For example, both Disney and John Deere have applications
which share large portions of code. Which is why I always strive to design
all application components to be reusable, and testable in isolation. That
way they become reusable modules.

 The e-Magazine framework which was developed for Verizon lived on to
spawn many different applications, a lot of which are still in the App Store
today.

Walt Disney
Mobile Magic

08mobile, server

UJML (Cross-Platform)

 Disney Mobile Magic was an application developed using a proprietary
cross-platform programming language called UJML. The language was created by a
company named UIEvolution. This application ran on many platforms, such as iOS,
Android, and Blackberry. Additionally I had a hand in working on the server-side
web services for this app.

AT&T
Ringback Tones

09mobile

iOS (iPhone)

Atomic Cactus
Artilect

10mobile, personal project

iOS (iPhone/iPad)

Features:

Over 60 levels
Online leaderboards
2-player versus mode

AcheivementsiPhone/iPad compatible

Auto-save & multitasking
Multitouch controls
In-game tutorials

Artilect was a personal project and one of my most successful apps. It was featured
by Apple in several App Store categories for several weeks and reached into the
Top 15. The application used a homegrown hybrid B*/Dijkstra pathfinding algorithm.
Written with OpenGL it featured colorful graphics and particle effects.

Recommended by AppSpy

Top 15 in the App Store
Featured under “Hot New Games”
Featured under “New And Noteworthy”

Atomic Cactus
Earthling

11mobile, personal project

iOS (iPhone)

Features:

Over 20 levels
Online leaderboards
Over 10 weapons to use
Multiple powerups

OpenGL particle effects
Accelerometer controls
Achievements
Story-based gameplay

Earthling was my first iPhone game, released in 2009. I knew that I could make a
great game if I made something that was very simple to play but was addictive at the
same time. I did not want the user to spend countless hours learning how things work.
It was therefore decided that the controls will be strictly accelerometer based. To
shoot, the user simply had to tap anywhere on the screen. This approach allowed me to
utilize the entire screen unobstructed.

Reached OpenFeint main page

iPhone Apps+ Best Award
Featured “Hot New Games”
Featured “New And Noteworthy”

As with all my personal games and
apps, I created all the graphical
assets. The game relied on OpenGL
and Cocos2D for animation.

Some fun facts:

- It took longer to create the
graphical assets than to write
the code for this game.

- Developed on the 1st generation
iPod Touch using the 1st
generation Intel-based MacBook.

Atomic Cactus
Electroid

12mobile, personal project

Objective-C (iPhone, OSX)

Features:

12 free levels
In-app purchases
OpenGL graphics
20+ powerups

Physics2D engine
Online leaderboards
Achievements
Premium soundtrack

 Electroid was my favorite game that I released
in the App Store. It featured colorful OpenGL
graphics, custom particle effects, intuitive
accelerometer and touch controls, lots of levels,
and more. It was also an experiment with in-app
purchases. There were level packs that users could
buy. Unfortunately, the in-app purchase model did
not work out, and while the app had thousands of
downloads, it did not generate much revenue.

 For this game I also created an OSX-based level
editor. The level editor was written in Objective-C
and worked in conjunction with an existing physics
object editor. This allowed me to quickly create
and push out level packs.

 Fun (or not so fun) fact: I started developing
this game way back in 2006, but lost the source
code due to hard drive failure. It was eventually
re-written and released in 2009, 3 years too late.

University of Washington
e-Nutrition

13mobile, server

iOS (iPhone), Java

 The e-Nutrition app was part of a larger
data=mining project at the University Of
Washington. The goal of the project was to let
people take images of what they eat throughout
the day, let them specify the type of food,
calorie amount, location, time, etc. This
information would be uploaded to a server and
used for data mining to extract patterns of
food intake, etc.

 There was talk about outsourcing the aquired
images and descriptions to other branches of
the university for image recognition so that we
could develop an application where the user
simply snaps a picture of a food item and it is
recognized by our servers and all the
nutritional info is automatically populated.

 My role in this project was development of
the client application for the iPhone.
Additionally I set up a server database and web
services required for data upload from the
client.

Atomic Cactus
Earthling: Survival

13mobile, personal project

iOS (iPhone)

Several months after the release of Earthling, I
decided to follow up with a promo game loosely
based on the full version. The game was created in
under two weeks based entirely on Earthling's
existing game engine.

This promo game features a different gameplay (a
survival mode) where the player defens a city from
an ever increasing salvo of asteroids. Think
“Missile Command” but on steroids.

The game also featurs some unique powerups that
were different from the full version of the game.

Earthling: Survival was not a demo version,
instead it was a standalone fully featured game
aimed to promote the more complex story-based
Earthling.

As an experiment in app promotion, this did
nothing to promote the full version. But the free
promo game proved quite popular with lots of
players competing online.

Walt Disney
DSAA

14server

Java, Objective-C

 DSAA stands for Disney Studios All
Access. This was a project that allowed
users with a Disney.com account to purchase
and stream Disney video content.

 I was directly involved in creating a
suite of RESTful web services for client
consumption. These included registration,
account management, media catalog, reward
points, and more. We used technologies such
as Memcached, MongoDB, OAuth, Spring, CXF,
JAX-RS. The code was primarily written in
Java. I periodically helped a little with
the iOS apps as well.

 During my work on the web services for DSAA, I developed a unique annotation-based
API versioning system. This system allowed developers to annotate API calls within
the source code so the server knew which method to execute.

Atomic Cactus
Parkonator

15hardware, personal project

Arduino

 Parkonator is an open-source
parking-assist system that I
designed using the Arduino
platform. It uses ultrasound
sensors to detect distance from
objects. This information is then
digitally overlayed over an RCA
backup camera and piped into any
compatible video display in the
vehicle’s dash.

 Parkonator has so far survived
5 years inside my Pontiac GTO
without issues.

Atomic Cactus
Steering Wheel Remote

16hardware, personal project

Arduino

 Another open-source project of mine
was a steering wheel adapter for all
resistor-ladder based vehicles.

 This adapter allowed the user to
connect their existing steering wheel
controls to an aftermarket stereo
(Android-based) on the cheap, without
spending over $150 on a device that can
be built at home for under $30.

 I used an Arduino Uno R3 and a simple
home-made ohm meter circuit to detect
which button was pressed. For Android
head units, the Arduino was them flashed
with special firmware that made it act
as an HID device.

Angry Lychee
Felik

17hardware, personal project

RaspberryPi, Linux, Java

 Felik is my first commercial hardware
project. I can’t talk a lot about what
it does, because it will be launching on
KickStarter soon, and I don’t want to
spoil the surprize. For now, I’ll
include these images to show what it
will look like without going too much
into detail about what it does.

Atomic Cactus
PocketWin

18mobile, personal project

Flash ActionScript, C# (Windows Mobile 2003)

 This was my first commercial mobile application. Back in 2003, it was developed
for Windows Mobile 2003 PDAs. There weren’t any smartphones around back then. The
application subsequently stayed in the Top 10 best selling app spot on two largest
mobile app websites at the time: Pocket Gear and Handango.

 The concept behind this app was to create a
skinnable application launcher that would mimic
various existing deskrop operating systems of the
time. It came with a default Windows XP skin, and
contained many more. Users could extend the
application with plugins. The Android platform
currently allows the user to completely replace
their app launcher, and this app was the granddaddy
of them all. The app was written in Flash
ActionScript and C#, and ran on a large variety of
devices due to Flash’s cross-platform nature.

